Craniofacial Transcriptional Enhancers

Project Update Annual Investigator Meeting 2013 Iowa City

Axel Visel

Genomics Division

Lawrence Berkeley National Laboratory

FaceBase

Visel Lab - Outline

Overview

Project Background Data Available to Date – Summary

OPT Viewer

with Hub Team, Satya, et al.

Enhancer Cleft-Associated Variant testing

IRF6 enhancer Brazil mutation (with Brian Schutte et. al)

Enhancer Deletion Studies

with Benedikt Hallgrimsson

Project Overview

MOTIVATION

Non-coding sequences (distant-acting enhancers) play a role in many human traits and disease

They are difficult to study and characterize

GOALS

Map craniofacial enhancers in the genome to understand their role in normal development, birth defects, and to interpret human genetic studies

Study subsets in transgenic mice to understand their activities in detail

Make results community-accessible through FaceBase

Approach: Enhancer mapping by tissue-ChIP-seq

ERNERT DRLANDD LAWRENCE BERKELEY NATIONAL LABORATORY

Transgenic Testing of Candidate Enhancers for Craniofacial *In Vivo* Activities

10 Example Enhancers (just one representative embryo each)

Overview of Data Available (May 2013)

p300 ChIP-seq

- e11.5 whole-face (on hub)
- e13.5 2nd palate (on hub)
- e13.5 2nd palate replicate (on hub)
- e14.5 2nd palate (on hub)
- e15.5 2nd palate failed QC, repeat collection in progress

RNA-seq

- e11.5 whole-face (on hub)
- e12.5 2nd palate (on hub)
- e13.5 2nd palate (on hub)
- e13.5 2nd palate replicate (on hub)
- e14.5 2nd palate (provided to hub, upload in progress)
- e15.5 2nd palate (provided to hub, upload in progress)

Transgenic experiments to date (e11.5/e13.5)

111 elements total tested (95/16)

63 were reproducible enhancers (in some tissue, 59/4)

41 positive in craniofacial structures (37/4)

→ **40 OPT scanned** (37/3)

New Hub Feature: OPT Viewer

(with Jan Harkes, M. Satyanarayanan, Harry Hochheiser, Shiyi Shen)

New Hub Feature: OPT Viewer

(with Jan Harkes, M. Satyanarayanan, Harry Hochheiser, Shiyi Shen)

Example: mCF144

Variant testing: IRF6 enhancer

LETTERS

genetics

Disruption of an AP-2 α binding site in an *IRF6* enhancer is associated with cleft lip

Fedik Rahimov¹, Mary L Marazita², Axel Visel³, Margaret E Cooper², Michael J Hitchler⁴, Michele Rubini⁵, Frederick E Domann⁴, Manika Govil², Kaare Christensen⁶, Camille Bille⁶, Mads Melbye⁷, Astanand Jugessur⁸, Rolv T Lie⁸, Allen J Wilcox⁹, David R Fitzpatrick¹⁰, Eric D Green¹¹, NISC Comparative Sequencing Program¹¹, Peter A Mossey¹², Julian Little¹³, Regine P Steegers-Theunissen¹⁴, Len A Pennacchio³, Brian C Schutte¹ & Jeffrey C Murray¹

2008 Nature Genetics (Rahimov et. al)

MCS-9.7 enhancer of IRF6

rs642961

CCCAGGATGT Human Chimp A Rhesus

SNP disrupts conserved AP-2α binding site (EMSA)

Revisiting the MCS-9.7 enhancer of IRF6

(with Walid Fakhouri, Fedik Rahimov, Renata de Lima, Temis Felix, Jeff Murray, Brian Schutte)

- Pedigree (Brazil)
- Van der Woude Syndrome
- No IRF6 coding mutations

- sequencing identifies a new variant in IRF6 MCS-9.7 enhancer
- insertion **350dupA** abolishes activity in cell culture
- **350dupA** disrupts a p63 binding site in vitro
- also disrupts p63 binding at a 2nd site ~60bp away (presumptive gain-of-function, see Brian for details)

Question: IN VIVO Effects of **350dupA** ???

Fakhouri et al., in preparation

A new variant that disrupts MCS-9.7 in vivo activity

(with Walid Fakhouri, Fedik Rahimov, Renata de Lima, Temis Felix, Jeff Murray, Brian Schutte)

Fakhouri et al., in preparation

Research project: *In vivo* function of craniofacial enhancers

Human face morphology is largely genetically determined – e.g. illustrated by monozygotic twins

But what are the genetic drivers of normal variation?

Model:

- core sets of developmental genes
- fine tuned by arrays of distant-acting enhancers

Dissecting the Regulatory Landscapes of Craniofacial Genes

(shown here: Msx1)

Msx1 expression (Coudert et al 2005)

Enhancer activity is required for region-specific activity

Enhancer activity is required for region-specific activity

 Δ hs1431 expression phenotype

Enhancer deletion results in down-regulation

Craniofacial morphometric analysis (micro-CT scan)

With Benedikt Hallgrimsson Lab

Compare adult KO skulls to matched WT control skulls

Morphological changes are not limited face region

With B. Hallgrimsson Lab

Craniofacial morphometric analysis (micro-CT scan)

With B. Hallgrimsson Lab

Magnitudes of shape difference between null mice and wild-type

Magnitude of shape differences correlates with:

- Magnitude of expression phenotype
- Spatial extent of enhancer activity

Enhancer KO studies - Conclusions

At least two out of three KOs affect craniofacial shape

Magnitude of shape differences broadly correlates with expression phenotypes

Findings consistent with a model in which craniofacial morphology is fine-tuned by enhancers

Acknowledgments

Lawrence Berkeley National Lab and DOE Joint Genome Institute

Catia Attanasio, Alex Nord, Matt Blow

Len Pennacchio Eddy Rubin

Mouse Transgenics Malak Shoukry Jennifer Akiyama Veena Afzal Amy Holt Ingrid Plaijzer-Frick Roya Hosseini Next-Gen Sequencing Tao Zhang Feng Chen Crystal Wright Enhancer Browser Inna Dubchak Collaborators/Contributors: Robert Cornell, Mike Dixon, David FitzPatrick, Benedikt Hallgrimsson, Rulang Jiang, Michael Lovett, Mary Marazita, Jeff Murray, Stephen Murray, Bing Ren, John Rubenstein, Brian Schutte

