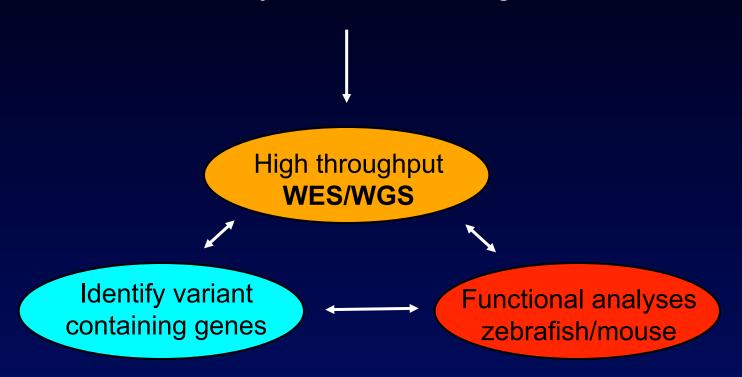
Rapid Identification and Validation of Human Craniofacial Development Genes

FaceBase

2nd FaceBase Annual Meeting Denver, CO May 2, 2016

Richard Maas, M.D., Ph.D. BWH Division of Genetics

Eric Liao, M.D., Ph.D. MGH Dept. of Plastic Surgery

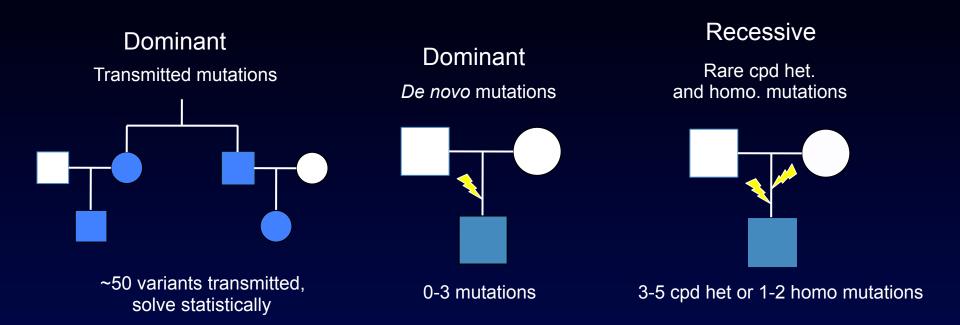


Genomic sequencing is transformative!

- The cost of WES/WGS continues to fall
- Only a small fraction of genes have assigned human phenotypes
- Monogenic disease genes may contribute to common disease phenotypes
- Integration of clinical and research efforts across FaceBase
- Raison d'etre: Application of WES/WGS to carefully selected cases of monogenic disease can reveal new underlying genetic etiologies and therapeutic pathways

Discovering Human Birth Defect Genes

Identify genes in patients with craniofacial developmental defects and bioinformatically tractable monogenic inheritance



Rapid Craniofacial Gene Discovery: Specific Aims

- 1. Ascertain and recruit patients with a wide range of craniofacial dysmorphoses of likely monogenic etiology.
- 2. Rapid identification of genes regulating human craniofacial development (WES, WGS and seq. analysis).
- Rapid expression and functional analysis of human candidate genes (zebrafish > mouse).

Bioinformatically solvable genetic paradigms

Assumptions

- Monogenic inheritance
- Complete penetrance
- Limit to protein coding mutations, splice site mutations, structural variants

FaceBase Craniofacial Gene Discovery Program

- Starting from the CLARITY Challenge, 2012
- Clinical, Bioinformatics and Experimental faculty work interactively on cases

- 37 cases ascertained → propose to accept ~100 (~250 WES/WGS)
- Expand monogenic case referrals for WES/WGS
- Develop new statistical, computational methods, crowd sourcing, experimental validation platform

Genome Analysis Case Selection Process

- 1. Does the case present an opportunity for an important clinical or biological discovery?
- 2. Is the case potentially statistically solvable?
- 3. What would be important biological considerations?
- 4. Do we have a follow up strategy?

Assign: Clinical, Genome Analysis, Bioinformatics and Biologist Team Members to each case

Patients with craniofacial defects: genes identified to date

- SPECC1L Oblique facial clefting (mouse, fly)

 AJHG 89, 44-55, 2011; Plast Reconstr Surg. 134, 748, 2014.
- *CAPZB* Pierre Robin Syndrome (mouse, fish) *HMG* 25, 1255, 2016.
- RSPRY1 Progressive skeletal dysplasia facial dysmorphism (mouse)
 AJHG 97, 608, 2015.
- PIEZO2 Arthrogryposis, characteristic facies, cleft palate (fish)
 PNAS 110, 4667-72, 2013
- ZEB2 Mowat-Wilson Syndrome Mandibular prognathism (mouse)
- ATG4C Cleft palate (fish)
- MAP3K7 (TAK1) Facial dysmorphosis (variable phenotype)
- FBN1 Atypical Marfanoid syndrome (micrognathia, brachycephaly, +)

FaceBase Project Milestones

Goal: To solve ~25 cases

Assume: ~25% success rate

Therefore: Accept and sequence about 100 cases

Trio assumption: Consent and sequence ~250 individuals

Models / fxnal expts / causality: As needed

Cases evaluated: 37

Cases accepted: 22

Cases rejected: 4

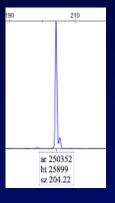
Cases deferred: 11

Cases consented: 10 prior + 8 (6 as trios)

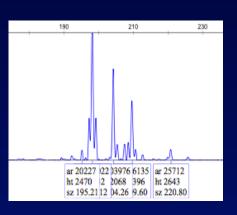
DNAs drawn: 10 prior + 5 trios (2 pt. only)

Genomic DNA seq: 10 prior +2 completed

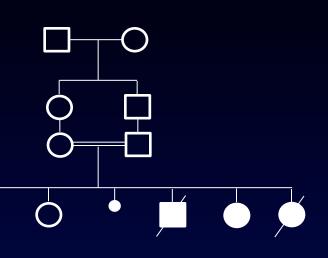
Models / fxn / 2nd hits: 9


Face Base Case # 009: ISLR2

Case: 0 y/o, Female


Notable Symptoms:

- Large intestine (Hirschsprung's Disease)
- Hydrocephalus
- The patient has a frame shift deletion in ISLR2.



WT

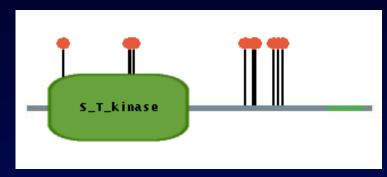
Mutant

FB Case # 027: Asymmetric skull

Joan Stoler, Catherine Nowak and colleagues

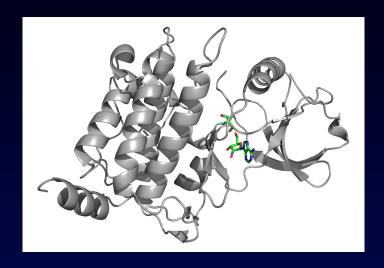
- Asymmetric skull configuration w/ fusion of R sphenofrontal suture, accessory R parietal suture; absent R squamosal suture.
- Congenital plagiocephaly, brachcephaly, torticollis, mandibular prognathism
- C-spine vertebral fusions
- Metopic and occipital prominence, mild prognathia
- Bony ridging of frontal bones in midline nl. variant vs. 2° to prematurely fused metopic suture.
- Other: anklyglossia, hearing loss

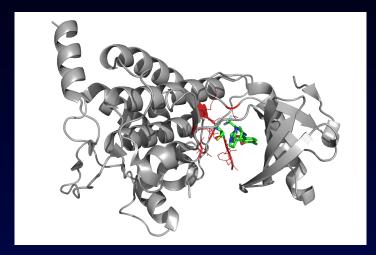
FB Case # 031: Macrocephaly

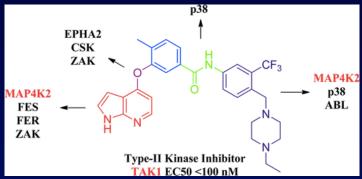

Catherine Nowak. M.D. and colleagues

- 3 yo female, dysmorphosis, relative macrocephaly, frontal bossing
- Small stature, hypotonia, hypermobility, cardiac valve prolapse, global developmental delay.
- Microarray with 7p21.2 deletion (mat). Russel-Silver panel neg.
- Previous Studies: brain MRI with mega cisterna magna.

- WES (trio) → De novo mutation in MAPK3K7, C174Y
- Located in Serine-Threonine Kinase domain
- Highly conserved, with C174Y= 0 counts in ExAC
- Aka: TGF-beta Activated Kinase 1, interacts with TAB1
- Matchmaker: 2 other ? similar cases



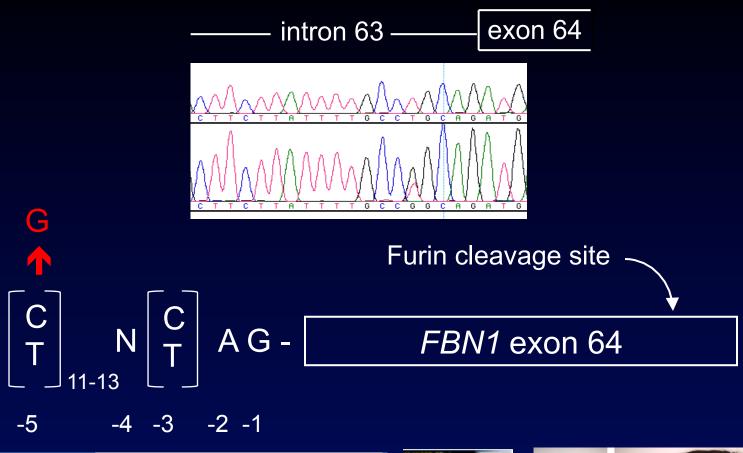



FB Case # 031 cont'd: MAP3K7 C174 resides in a ligand binding pocket

pdb ID: 2eva; positions: 31-412 (out of 1-606); Domain: 36–291 Protein kinase

Binding site for adenosine Also, for TAB1

Binding site for Type II Inhibitors



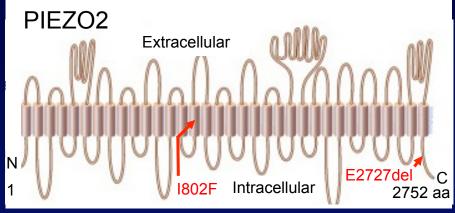
FB Case # 037: Potential FBN1 exon skipping mutation

RESEARCH ARTICLE

medical genetics A

Marfan Syndrome With Neonatal Progeroid Syndrome-Like Lipodystrophy Associated With a Novel Frameshift Mutation at the 3⁷ Terminus of the FBN1-Gene

Luitgard M. Graul-Neumann, ^{1,2*} Tina Kienitz, ³ Peter N. Robinson, ² Sevjidmaa Baasanjav, ^{2,4} Benjamin Karow, ² Gabriele Gillessen-Kaesbach, ⁵ Raimund Fahsold, ⁶ Hartmut Schmidt, ^{3,7} Katrin Hoffmann, ^{2,8} and Eberhard Passarge ⁹



FB Case # 003: Distal Arthrogryposis Type 5

- Mechanically activated (MA) cation channel
- PIEZO2 mutations in DA5 patients

Acknowledgements – FaceBase Team

Clinical and Experimental Group

Richard Maas, MD, PhD

Eric Liao, M.D., Ph.D.

Fowzan Alkuareya, M.D.

Joan Stoler, M.D.

Catherine Nowak, M.D.

Pedro Sanchez, M.D. - USC / LA

Ch. Hosp.

Ophir Klein, M.D., Ph.D. - UCSF

Hazel Perry, CGC

Hichem Miraoui, Ph.D.

Kushi Mukerjee, Ph.D.

Irving Ling, M.D.

Kana Ishii, M.D.

Joan Xi

Genome Analysis Group

Shamil Sunyaev, PhD Dana Vuzman, PhD Andrew Bjonnes, MSc Chris Cassa, PhD Ivan Adzhubey, PhD

Administrative Team

Victoria Perroni Cait Lieneck Kaylin Charette

Plus many other clinical and computational colleagues!

NIH U01 HG007690

NIH U01 DE02443

