

## Technology Project: Shape-Based 🥏 Retrieval of 3D Craniofacial Data





PI: Linda Shapiro, Ph.D.

Key Personnel: James Brinkley, M.D., Ph.D.,

Michael Cunningham, M.D., Ph.D., Carrie Heike, M.D., Timothy Cox, Ph.D. Harry Hochheiser, Ph.D.

Postdoc: Ravensara Travillian, Ph.D.

RA: Shulin Yang, MS

RA: Jia Wu, MS

RA: Sara Rolfe, MS

RA: Ezgi Mercan







## Aims

- Software tools for craniofacial analysis (we have lots of these; available in CranioGUI)
- Quantification of similarity between faces (we use distance measures)
- Organization for retrieval (using Diamond)
- Prototype system for similarity-based retrieval (under development)



## Result 1: Pseudo-Landmarks



- New *fully-automatic* method for computing pseudo-landmarks on 3D meshes
- Experiments run on Seth Weinberg's Facial Norms Database comparing gender classification results on
  - Seth's hand-labeled anatomical landmarks
  - our pseudo-landmarks at different resolutions (automatic)
  - Hutton/Hammond dense pseudo-landmarks (requires hand labeling and correspondence)
  - Claes pseudo-landmarks (requires hand labeling and correspondence)
- Pseudo-landmarks in general classified better than landmarks and our method is much faster than the others
- Paper accepted for IEEE Eng. in Medicine and Biology



## Result 2: Autolandmarking



- Method for automatically detecting an arbitrary number of anatomical landmarks on a 3D face mesh.
  - 1. Geometric method finds an initial set of 17 landmarks on the target mesh.
  - 2. These are used to initialize a deformable matching method from a template mesh to the target mesh.
  - 3. Using the resultant correspondence, the required landmarks are transferred from the template mesh to the target mesh.
- Experiments were run on 115 3D facial meshes of normal adults from Seth Weinberg's Facial Norms Database.
- Our method has an average error of 2.64 mm over the 115 heads and is superior to prior published methods in the literature.
- Paper accepted for IEEE Eng. in Medicine and Biology

# Result 3:Shape Analysis through Optical Flow Vectors

- New tool for characterizing and quantifying the asymmetry in bilaterally paired structures.
  - Deformable registration produces a dense vector field correspondence
  - Deformation vectors have properties: deformation vector magnitude and the cosine distance between the deformation vector and the surface normal vector.
  - Vectors are clustered to detect regions of asymmetry
- Applied it to the two sides of the mandible of the mouse.
- Asymmetry scores compared to human expert (order=ranking)



- Paper accepted for IEEE Eng. in Medicine and Biology
- Current work on chick embryo images: multiple ages, w/wout cleft



# Ongoing: Analysis of Cleft Subjects



- Ongoing cleft study with Dr. Raymond Tse and Dr. Carrie Heike at Seattle Children's Hospital.
- 49 3dMD images (9 bilateral, 35 unilateral, 5 control)
- Ongoing evaluation of our symmetry plane finder (published last year)
- Once plane of symmetry is found, our grid-patch method quantifies differences in left and right sides based on radius, angle and curvature.
- Initial experiments to classify left vs. right unilateral clefts are 100% accurate.
- Final year's work is on investigating other computable features of clefts.

## Ongoing: Content-Based Image Retrieval

- Developed a web application for content-based retrieval of 3D face meshes using Satya's Diamond system from CMU (part of HUB).
- Adding features to the system (automatic landmarks, pseudo-landmarks) so we can run multiple kinds of retrievals in controlled tests.
- Plans to test features in a face retrieval task that will involve whole-face and facial-feature similarity, using Seth Weinberg's Facial Norms Database.
- Will have 2 kinds of evaluation
  - human evaluators (limited due to IRB)
  - comparison to retrievals using computationally expensive dense correspondence method with Procrustes distance.

# Ongoing: CranioGUI

- We developed CranioGUI to allow people to try our software without downloading and in an interactive environment.
- It runs on our server in client-server mode; users can upload their own images and download results.
- We've added a page of source code in the same tree structure as the CranioGUI modules, so users can take the source code of modules they want (but the VTK library is required; we can help you with that).
- We've added multiple new modules
  - some specifically for those of you who wanted points
  - some that produce our more advanced features

## **New Modules**

- PLY reader, PLY visualizer, STL-PLY and PLY-STL conversion (needed for some modules)
- Landmarks
  - Automatic landmarks from geometry (finds 17)
  - Deformation (maps target image to a template image using the automatic landmarks)
  - Transfer-Landmarks (transfers 24 landmarks from the template to the target)
  - Pseudo-Landmarks

#### Autolandmarking and Deformation Modules



Notart 🖉

EN 😧 🛱 🎗 🎲 🏱 는 9:43 PM 4/2/2013

#### Transfer of Anatomical Landmarks: Template to Target



## **New Modules**

### • Symmetry

- Mirror symmetry plane
- Symmetry score from points
- Symmetry score from grid cells
  - Radius
  - Angle
    (between surface normal vectors)
  - Curvature





#### Symmetry Plane and Symmetry Score from Points



#### Symmetry Plane and Symmetry Score from Points



#### Symmetry Plane and Symmetry Score from Grid Cells



#### Symmetry Plane and Symmetry Score from Grid Cells



## ShapeGUI

- A new GUI to show a separate set of modules for our animal (chicken and mouse) work.
- Data comes from micro-CT scans.
- Current demo is on mouse mandible data.
- Has modules from low-level preprocessing and smoothing through registration and comparison through deformation vector analysis.

#### Comparing Left and Right Sides of a Mouse Mandible



## Supplement: Ontology of Craniofacial Development and Malformation

- OCDM use cases have been extended, re-categorized, and cross-linked for comparison and extraction of common themes. <u>https://www.facebase.org/ocdm/wiki/use-cases</u>
- Workflow has been established for creating and exporting OCDM content. OWL file is used for queries. Modules and queries will be covered by Jim Brinkley.
- Content on adult human and mouse, developing human and mouse, malformations of human and mouse, and some mappings between them have been created.
- A web client for visualization of the OCDM has been developed and is under continued improvement. <a href="https://www.facebase.org/content/ocdm">https://www.facebase.org/content/ocdm</a>.