FaceBase2:

Epigenetic landscapes and regulatory divergence of human craniofacial traits

sciencephotolibrary

Cranial neural crest and fantastic variation of

Psychrolutes marcidus

Gekko gecko

Podargus strigoides

Balaeniceps rex

Lepidobatrachus laevis

Homo sapiens

Coelops robinsoni

facial form

Anoplogaster cornuta

Mandrillus sphinx

What (molecularly) makes our faces human?

Cranial neural crest derived structures are strong targets of selective pressure and are divergent between humans and chimps

Can we systematically map cis-regulatory divergence in human and chimp neural crest cells?

Our aims:

AIM1: To characterize epigenetic landscapes and transcriptomes of human and chimpanzee cNCCs and to identify conserved and species-specific cis-regulatory elements

AIM2. To analyze activity of candidate humanspecific craniofacial enhancers *in vivo*.

Human embryonic stem cell-based model of cranial neural crest formation

Bajpai et al., Nature, 2010 Rada-Iglesias et al. Cell Stem Cell, 2012

- migration in ovo
- neurogenic, mesenchymal and melanocytic • potential

Establishment of the chimpanzee cranial neural crest model

Establishment of the chimpanzee cranial neural crest model

Generate comprehensive epigenomic maps of human and chimp neural crest cells

Observed epigenomic patterns are generally well conserved between human and chimp

Most mapped elements correspond to putative active enhancers

H3K27ac

H3K4me1/H3K4me3 ratio

Mapped active enhancer elements are enriched for craniofacial ontologies

H3K27ac

H3K4me1/H3K4me3 ratio

Mapped active enhancer elements drive facial expression *in vivo*

H3K27ac

H3K4me1/H3K4me3 ratio

Upcoming plans:

Mid-2015:

- Deposit all human CNCC ChIP-seq (TFAP2a, NR2F1, p300, H3K4me1, H3K4me3, H3K27ac, H3K27me3) and ATAC-seq raw sequencing reads to the NCBI SRA repository (30-40 libraries) (three different genetic backgrounds)
- Deposit minimally processed ChIP-seq and ATAC-seq results (wig files) to the Hub for visualization in the FaceBase genome browser
- Deposit metadata sheets with detailed descriptions of data and QC

Using epigenomics to experimentally map regulatory divergence in human and chimp neural crest cells

Quantitative comparisons of H3K27ac levels at orthologous regions identify species-biased enhancers

chimp K27ac

H2K27ac status alone is predictive of biases in transcription factor and p300 binding and chromatin accessibility

Examples of species-biased enhancers

Species-biased enhancers are associated with genes that affect craniofacial structures divergent in humans and chimps (often in a dosage dependent manner)

We can validate epigenomic enhancer predictions and species-specific biases in activity using luciferase reporter assays in human and chimp CNCCs

AIM2. To analyze activity of candidate humanspecific craniofacial enhancers *in vivo*.

Use transient transgenesis reporter assays in mice to test human-biased candidate enhancer regions (and, where applicable, their chimp orthologs)

Licia Selleri

Ongoing Analyses of Transgenic Mouse Embryos for Divergent Chimp/Human Enhancers

[<u>Analyses Complete</u>: 4 PCR(+), 2 LacZ (+) Tg Embryos] CNTNAP2x3-Chimp (1 more injection round needed) [<u>Analyses Complete</u>: 6 PCR(+), 5 LacZ (+) Tg Embryos] CNTNAP2x3-Human

[Analyses Ongoing: 3 PCR(+), 1 LacZ (+) Tg Embryos]PAPPAx3-Chimp(1 more injection round needed)[Embryo Harvesting In Progress]PAPPAx3-Human

[Analyses Ongoing; 4 PCR(+), 4 LacZ (+) Tg Embryos] LRP6x3-Human

Ongoing Analyses of Transgenic Mouse Embryos for Divergent Chimp/Human Enhancers

[<u>Analyses Complete</u>: 4 PCR(+), 2 LacZ (+) Tg Embryos] CNTNAP2x3-Chimp (1 more injection round needed) [<u>Analyses Complete</u>: 6 PCR(+), 5 LacZ (+) Tg Embryos] CNTNAP2x3-Human

Observed expression domains are highly reproducible despite variation in intensity

Human CNTNAP2 enhancer spatial expression patterns in E11.5 tg mouse embryos

5/5 tg embryos show these expression domains despite variation in intensity; 2 are shown

Sagittal views

Intensity of Staining

Potential Gain of Head Expression Domains of Human CNTNAP2 Enhancer Compared to Chimp Enhancer

*****Olfactory Placode: Domain Common to Chimp and Human**

Upcoming plans:

Mid-2015:

- Analyze expression patterns and image first five reporter constructs
- Clone and inject next round of constructs

Acknowledgements:

Licia Selleri (Weill Cornell School of Medicine)

Robert Aho (Weill Cornell School of Medicine)

Rusty Gage and Carol Marchetto (Salk Institute)

FaceBase2 Consortium NIDCR

Sara Prescott

(Stanford)

